skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Shuangchen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
  7. Homomorphic encryption is a promising technology for enabling various privacy-preserving applications such as secure biomarker search. However, current implementations are not practical due to large performance overheads. A homomorphic encryption scheme has recently been proposed that allows bitwise comparison without the computationally-intensive multiplication and bootstrapping operations. Even so, this scheme still suffers from memory-bound performance bottleneck due to large ciphertext expansion. In this work, we propose HEGA, a near-data processing architecture that leverages this scheme with 3D-stacked memory to accelerate privacy-preserving biomarker search. We observe that homomorphic encryption-based search, like other emerging applications, can greatly benefit from the large throughput, capacity, and energy savings of 3D-stacked memory-based near-data processing architectures. Our near-data acceleration solution can speed up biomarker search by 6.3× with 5.7× energy savings compared to an 8-core Intel Xeon processor. 
    more » « less